DESCRIPTION

The M74LS107AP is a semiconductor integrated circuit containing $2 \mathrm{~J}-\mathrm{K}$ negative edge-triggered flip-flop circuits with discrete terminals for clock input \bar{T}, J and K inputs and direct reset input R_{D}.

FEATURES

- Negative edge-triggering
- Independent input/output terminals for each flip-flop.
- Direct reset input
- Q and $\overline{\mathrm{Q}}$ outputs
- Wide operating temperature range ($\mathrm{T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}$)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

J and K signals are read when \bar{T} is " H ". When \bar{T} changes from " H " to " L ", Q and \bar{Q} transit with the J and K signals to the states described in the function table. By setting ${\overline{R_{D}}}$ in " L " state, Q and $\overline{\mathrm{O}}$ become " L " and " H ", respectively, irrespective of the states of the other input signals. For use as a J-K flio-flop, keep $\overline{R_{D}}$ in the " H " state. M74LS107AP is the same as M74LS73AP except for pin configuration.

Outline 14P4
FUNCTION TABLE (Note 1)

\bar{T}	$\overline{R_{0}}$	J	K	Q	\bar{Q}
X	L	X	X	L	H
\downarrow	H	H	H	Toggle	
\downarrow	H	L	H	L	H
\downarrow	H	H	L	H	L
\downarrow	H	L	L	Q^{0}	$\overline{Q^{0}}$
H	H	X	X	Q^{0}	$\overline{Q^{0}}$

Note 1: \downarrow ' : transition from high to low-level
X : irrelevant
Q^{0} : level of Q before the indicated steady-state input conditions were established.
$\overline{Q^{0}}$: level of $\overline{\mathrm{O}}$ before the indicated steady-state inpus conditions were established.
Toggle : complement of previous state with \downarrow transition of outputs

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=-20-+755^{\circ}$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
VCC	Supply voltage		$0.5+7$	\checkmark
V_{1}	Input voltage		$0.5+15$	\checkmark
V_{0}	Output voltage	High-level state	0.5 VCC	V
Topr	Operating free-air ambient temperature range		20.75	C
$\mathrm{T}_{\mathbf{s t g}}$	Storage temperature range		$65 \cdot 150$	C

RECOMMENDED OPERATING CONDITIONS (Ta 20.75 C . unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Tyd	Max	
VCC	Supply voltage		4.75	5	5.25	V
1 OH	High-level output current	$\mathrm{VOH} \geq 2.7 \mathrm{~V}$	0		- 400	$\because A$
102	Low-level output current	$V_{O L} \leq 0.4 \mathrm{~V}$	0		4	mA
		$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	0		8	$m A$

ELECTRICAL CHARACTERISTICS ($\mathrm{Ta}_{\mathrm{a}}-20-15^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			Unit		
			Min	Typ*	Max					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			\checkmark
$V_{\text {IL }}$	Low-level input voltage						0.8	V		
$V_{\text {IC }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}-4.75 \mathrm{~V}, 1 \mathrm{C}$				1.5	V		
V OH	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-4.75 \mathrm{~V}, \mathrm{~V}_{1}-0.8 \mathrm{~V} \\ & \mathrm{~V}_{1}=2 \mathrm{~V}, \mathrm{lOH}^{-} \quad 400 \mu \mathrm{~A} \end{aligned}$		2.7	3.4		V		
VOL	Low-level output current		$\mathrm{V}_{\text {CC }}-4.75 \mathrm{~V}$	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4	V		
			$V_{1}=0.8 \mathrm{~V}, \mathrm{~V}_{1}=2 \mathrm{~V}$	$1 \mathrm{OL}-8 \mathrm{~mA}$		0.35	0.5	V		
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	J, K	$\begin{aligned} & V_{C C} \quad 5.25 \mathrm{~V} \\ & V_{1}-2.7 \mathrm{~V} \end{aligned}$				20	μA		
		$\overline{R_{D}}$					60			
		\bar{T}					80			
		J, K	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V} \end{aligned}$				0.1	m A		
		$\overline{R_{0}}$					0.3			
		$\overline{\mathrm{T}}$					0.4			
IIL	Low-level input current	J. K	$\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & V_{1}=0.4 \mathrm{~V} \end{aligned}$				-0.4	mA		
		$\overline{R_{D}} \bar{\top}$					0.8			
los	Short-circuit output current (Note 2)		$\mathrm{V}_{\mathrm{CC}}-5.25 \mathrm{~V}, \mathrm{~V}_{0}=$		- 20		- 100	$m \mathrm{~A}$		
${ }^{\text {I CC }}$	Supply current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ (Note 3)			4	6	mA		

* : All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$.

Note 2: All measurements should be done quickly, and not more than one output should be shorted at a time.
Note 2: $I_{C C}$ is measured with Q and \bar{Q} outputs high in turn, At the time of measurement, \bar{T} input is grounded

SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}} \cdot 5 \mathrm{v}, \mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$f_{\text {max }}$	Maximum clock frequency	$\mathrm{C}_{\mathrm{L}}: 15 \mathrm{pF}$ (Note 4)	30	45		MH
tple	Low-to-high-level, high-to-low-level output propagation time, from input $\overline{\mathrm{T}}$ to output $\mathrm{Q}, \overline{\mathrm{Q}}$			8	20	ns
tPHL				6	20	ns
$t_{\text {PLH }}$	Low-to-high-level, high-to-low-level output propagation time, from input $\overline{R_{D}}$ to output $Q . \bar{Q}$			10	20	ns
$\mathrm{t}_{\text {PHL }}$				7	20	ns

Note 4: Measurement circuit

(1) The pulse generator (PG) has the following characteristics: $P R R=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$, $V_{p}=3 V$ p,p, $Z_{0}=50 \Omega$
(2) C_{L} includes probe and jig capacitance

TIMING REQUIREMENTS ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\mathrm{w}}(\overline{\mathrm{T}} \mathrm{H})$	Clock input $\overline{\mathrm{T}}$ high pulse width		20	12		ns
$\mathrm{t}_{\mathrm{w}}(\overline{\mathrm{Ro}})$	Direct reset input $\overline{R_{D}}$ pulse width		25	4		ns
tr	Clock rise time			650	100	ns
tf	Clock pulse fall time			900	100	ns
$\mathrm{t}_{\text {SU(H) }}$	Setup time high J, K to $\overline{\mathrm{T}}$		20	9		ns
$\mathrm{t}_{\mathrm{Su}(\mathrm{L})}$	Setup time low J, K to T		20	10		ns
$t_{\text {h(H) }}$	Hold time high J, K to T		0	-8		ns
$\mathrm{t}_{\mathrm{h} \text { (L) }}$	Hold time low J. K to $\overline{\mathrm{T}}$		0	-5		ns

TIMING DIAGRAM (Reference level $=1.3 \mathrm{~V}$)

Note 5: The shaded areas indicate when the input is permitted to change for predictable output performance.

APPLICATION EXAMPLE

2bit shift register

Qo

Q_{1}

Note 6: Output switching characteristics may not satisfy the ratings if the clock signal is applied without observing the set-up time.

MITSUBISHI LSTTLs

 PACKAGE OUTLINESMITSUBISHI fDGTL LOGICf DPE D

$$
T-90-20
$$

TYPE 20P4 20-PIN MOLDED PLASTIC DIL
Dimension in mm .

