M74LS107AP

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH RESET

DESCRIPTION

The M74LS107AP is a semiconductor integrated circuit containing 2 J-K negative edge-triggered flip-flop circuits with discrete terminals for clock input T, J and K inputs and direct reset input R_D .

FEATURES

- Negative edge-triggering
- Independent input/output terminals for each flip-flop.
- Direct reset input
- Q and Q outputs
- Wide operating temperature range (T_a = -20 ~ +75°C)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

J and K signals are read when T is "H". When T changes from "H" to "L", Q and \overline{Q} transit with the J and K signals to the states described in the function table. By setting \overline{R}_D in "L" state, Q and \overline{Q} become "L" and "H", respectively, irrespective of the states of the other input signals. For use as a J-K flio-flop, keep $\overline{R_D}$ in the "H" state. M74LS107AP is the same as M74LS73AP except for pin configuration.

FUNCTION TABLE (Note 1)

Ť	R _D	j	К	Q	Q
×	L	χ .	×	L	н
Ţ	Н	Н	н	Tog	ggle
ļ	Н	L	н	L	н
J	Н	Н	L	Н	L
1	Н	Ŀ	L	Q ⁰	Ç0
Н	н	×	X	Q ⁰	Q ⁰

Note 1: ↓ : transition from high to low-level

X: irrelevant

Q0: level of Q before the indicated steady-state input conditions were established.

Toggle: complement of previous state with 4 transition of outputs

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH RESET

ABSOLUTE MAXIMUM RATINGS (Ta = -20- + 75°C, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		0.5 + 7	V
Vı	Input voltage		0,5 · + 15	V
V ₀	Output voltage	High-level state	0.5 V _{CC}	V
Topr	Operating free-air ambient temperature range		20 · 75	C
Tstg	Storage temperature range		65 · 150	C

RECOMMENDED OPERATING CONDITIONS (Ta = 20 + 75°C), unless otherwise noted)

Combat	0.			Limits			
Symbol	Parameter			Тур	Max	Unit	
Vcc	Supply voltage		4.75	5	5.25	V	
Тон	High-level output current	V _{OH} ≥2.7V	0		- 400	πA	
		V _{OL} ≤0.4V	0		4	mA	
OL	Low-level output current	V _{OL} ⇒ 0.5V	0		8	mΑ	

ELECTRICAL CHARACTERISTICS (Ta = -20 = +75°C, unless otherwise noted)

	Parameter Test cond		T	T		Limits		
Symbol			itions	Min	Тур≉	Max .	Unit	
VIH	High-level input voltage				2			V
VIL	Low-level input voltage	Low-level input voltage					0.8	V
Vic	Input clamp voltage		Vcc = 4.75V, 1 _{IC} =	18 mA			1.5	V
VoH	High-level output voltage			V _{CC} = 4.75V, V _I = 0.8V V _I = 2V , I _{OH} == 400 µA		3.4		V
VoL	Low-level output current		Vcc - 4.75V	IOL = 4 mA		0.25	0.4	V
			V::: 0.8V, V::: 2V	I _{OL} = 8mA		0.35	0.5	V
	High-level input current High-level input current J, K RD T	J, K					20	
		RD	V _{CC} 5.25V V ₁ 2.7V V _{CC} = 5.25V			60	μA	
		T		[80		
Ітн		J, K				0.1		
		Ro				0.3	mA	
		V _I = 10 V			0.4			
		J, K V _{GC} = 5.25V				0 . 4		
ارر	Low-level input current	R _D T	V ₁ = 0 . 4 V				0.8	mΑ
los	Short-circuit output current (Note 2)	V _{CC} - 5.25V, V _O = 0	V _{CC} - 5.25V, V _O = 0 V			··· 100	mA
lcc	Supply current	Supply current V _{CC} = 5 . 25 V (Note 3)			4	6	mA	

^{* :} All typical values are at V_{CC} = 6V, $Ta = <math>25^{\circ}C$.

Note 2: All measurements should be done quickly, and not more than one output should be shorted at a time.

Note 2: I_{CC} is measured with Q and \overline{Q} outputs high in turn. At the time of measurement, \overline{T} input is grounded.

SWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$, unless otherwise noted)

		Total	Limits			Unit
Symbol	Parameter	meter Test conditions	Min	Typ	Max	Oilit
fmax	Maximum clock frequency		30	45		MHz
tpLH	Low-to-high-level, high-to-low-level output propagation			8	20	ns
tent	time, from input \overline{T} to output Q , \overline{Q}	O _L ~ 15pF (Note 4)		6	20	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			10	20	ns
t _{PHL}	time, from input $\overline{R}_{\overline{D}}$ to output Q,\overline{Q}			7	20	กร

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH RESET

Note 4: Measurement circuit

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, tr = 6ns, tr = 6ns; tw = 500ns, $V_P = 3V_{P,P}, Z_0 = 50\Omega$
- (2) C_L includes probe and jig capacitance.

TIMING REQUIREMENTS (VCC=5 V, Ta=25°C, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Onit
tw(ŤH)	Clock input T high pulse width		20	12		ns
tw(RD)	Direct reset input RD pulse width		25	4		ns
tr	Clock rise time			650	100	ns
tf	Clock pulse fall time			900	100	ns
t _{SU(H)}	Setup time high J, K to T		20	9		ns
t _{su(L)}	Setup time low J, K to T		20	10		ns
t _{h(H)}	Hold time high J, K to T		0	- 8		ns
t _{h(L)}	Hold time low J, K to T		0	5		ns

TIMING DIAGRAM (Reference level = 1.3V)

Note 5: The shaded areas indicate when the input is permitted to change for predictable output performance.

APPLICATION EXAMPLE

2bit shift register

Note 6: Output switching characteristics may not satisfy the ratings if the clock signal is applied without observing the set-up time.

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} O7E D 6249827 0013561 3

T-90-20

